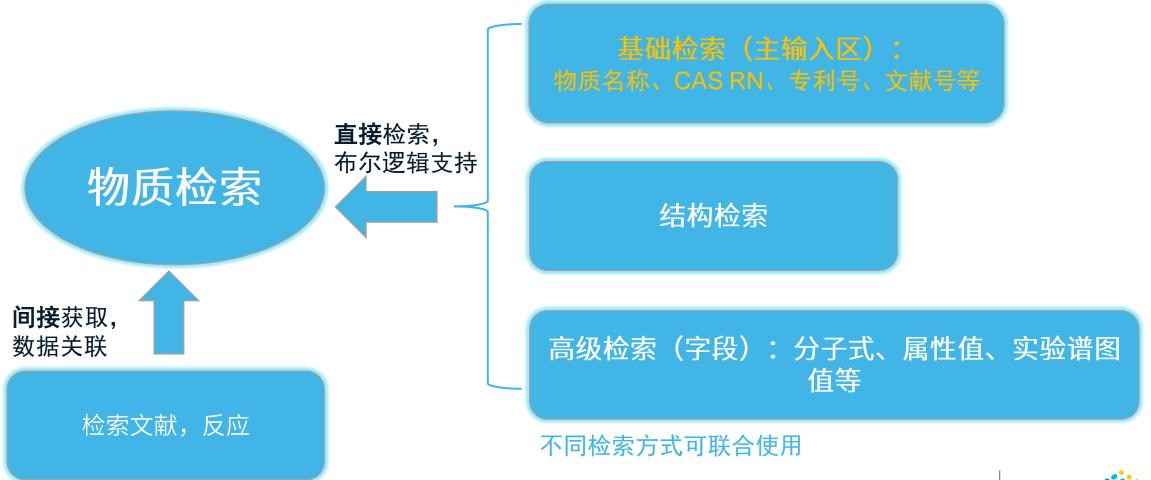
CAS SciFinder[®]论坛 物质信息的获取

钱欣博士 2022年3月8日

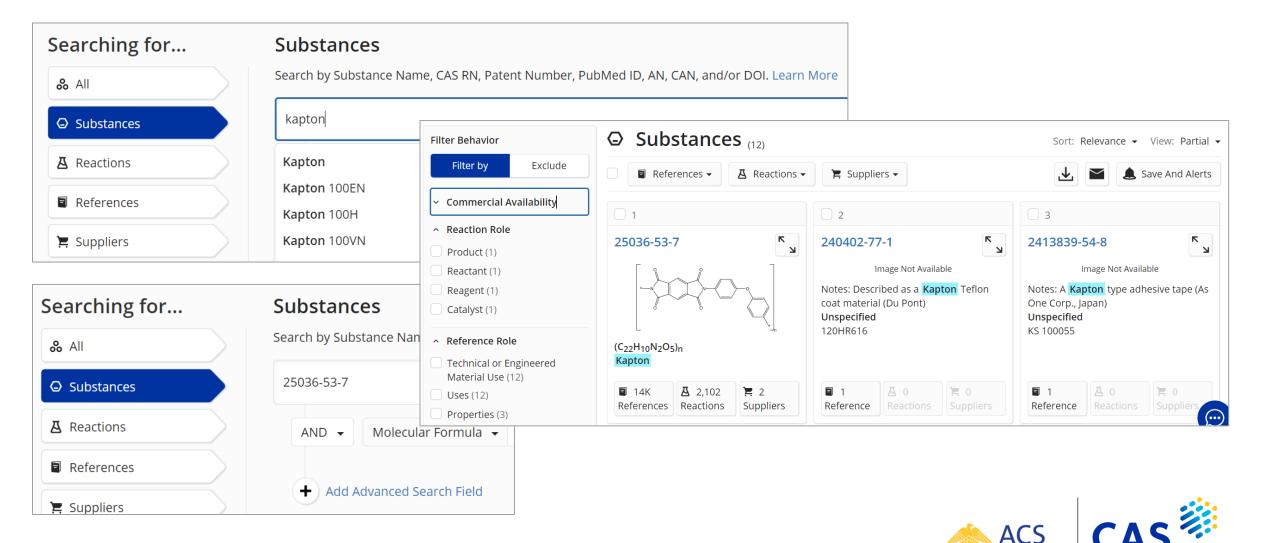
© 2022 American Chemical Society. All rights reserved.

- -CAS和CAS SciFinderⁿ简介
- -CAS SciFinderⁿ 物质检索方式
- -物质属性或谱图查询
- -在线演示以及Q&A

CAS SciFinderⁿ中覆盖的内容合集



来源: https://www.cas.org/cas-data和https://www.cas.org/about/cas-content

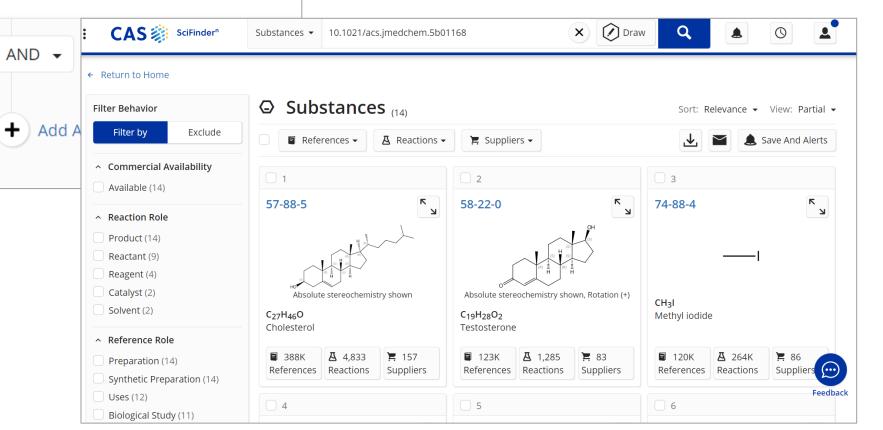


丰富的物质检索方式

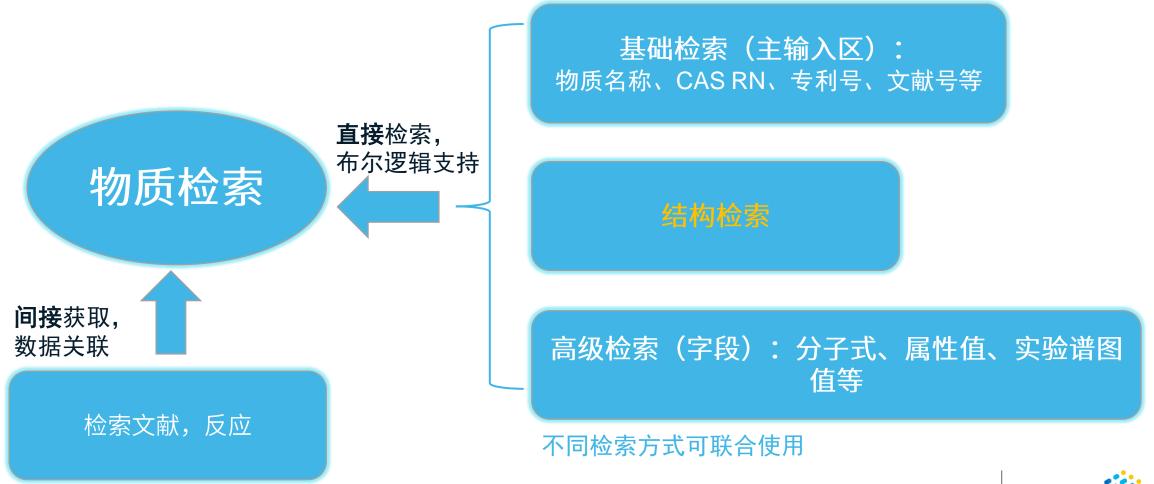
Searching for	Substances
& All	Search by Substance Name, CAS RN, Patent Number, PubMed ID, AN, CAN, and/or DOI. Learn More
© Substances	Enter a query Q
A Reactions	- → Molecular Formula →
References	在此输入物质名称,CAS号,专利号或者其他文献ID号
📜 Suppliers	+ Add Advanced Search Field Learn more about SciFinder ⁿ Advanced Search.
A Biosequences	
Retrosynthesis	

nternational

American Chemical Societ

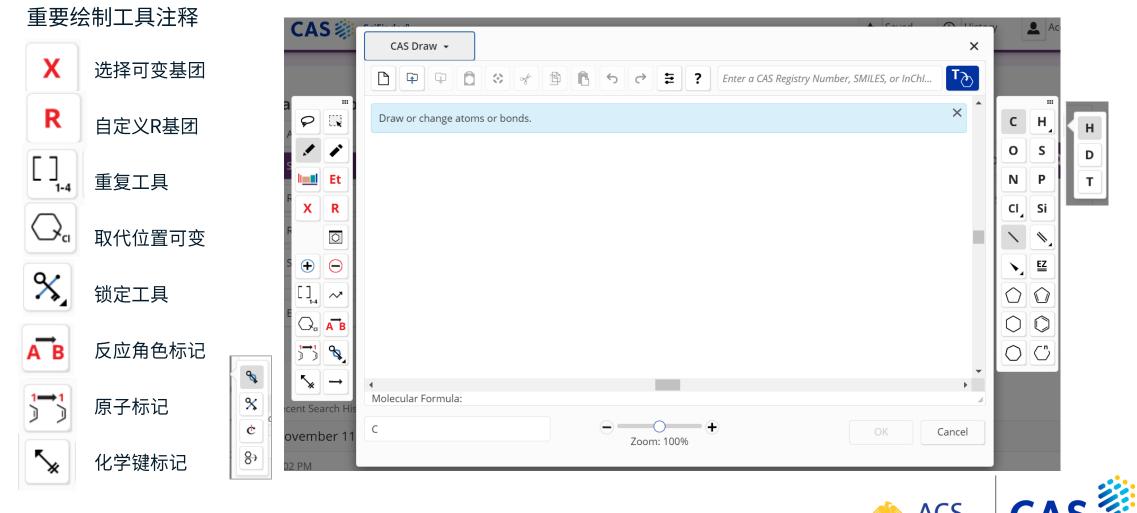

由文献号或者专利号获取

Searching for... All Substances Reactions References Suppliers


Substances

Search by Substance Name, CAS RN, Patent

10.1021/acs.jmedchem.5b01168



结构绘制面板的介绍

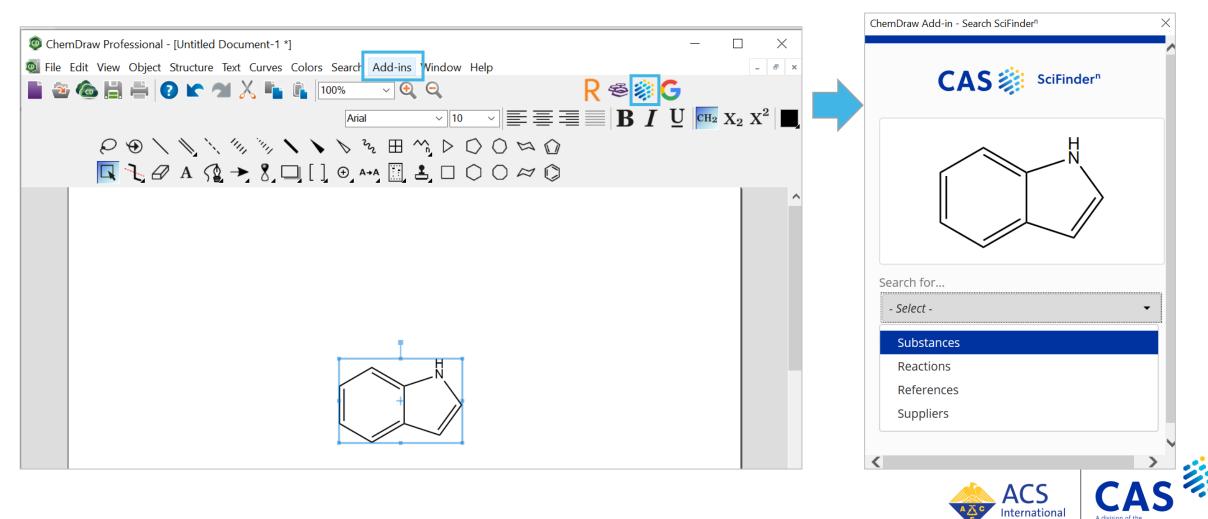
结构绘图工具的使用:同位素原子的绘制

: CAS 🐲	CAS Draw -		° , °
⊖ Substances	Image: Second with the second seco	ES, or InChl	Specify Atomic Mass
		O S N P F, Si N Si	 Any Abnormal Specific: 18 OK Cancel
$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ Rec $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 3 \\ 4 \\ 5 \\ 6 \\ 5 \\ 7 \\ 11:25 \text{ AM}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 11:25 \text{ AM} \\ \hline 11:25 \text$	▲ Molecular Formula: C ₈ H ₇ FO ₂ (154.14) 0 Zoom: 100%	K Cancel Rerun Searc	鼠标右键点击某原子,选中Abnormal获取 其各种同位素的化合物,选择Specific可以 精准输入具体的同位素质量数

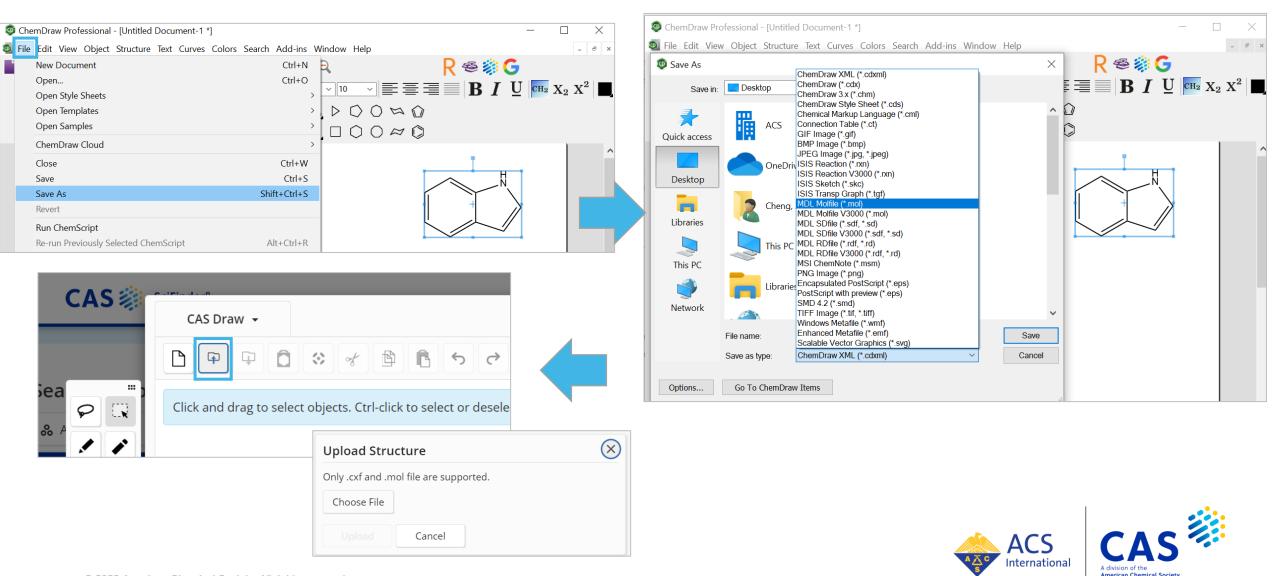
ChemDraw与SciFinderⁿ联用检索的方法

(1) 通过SMILES或InChI字符串切换

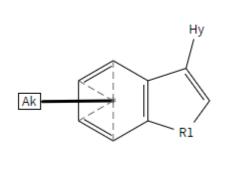
(2) 直接在ChemDraw中Add-in SciFinderⁿ (ChemDraw 18.2及以上版)(3) 通过MDL Molfile (.mol)文件导入

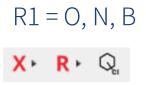

(1)通过SMILES或InChl字符串切换

💿 ChemDraw Professional - [Untitled Document-	1 *]	– 🗆 X		
Sile Edit View Object Structure Text Curve	es Colors Search Add-ins Window Help	_ & × ·	C12=CC=CC=C1NC	C=C2
Image: Second of Move Ctrl+Z Redo not available Shift+Ctrl+Z Cut Ctrl+X Copy Ctrl+C Paste Ctrl+V		$\mathbf{R} \circledast \circledast \mathbf{G}$ $\equiv \mathbf{B} \mathbf{I} \ \underline{\mathbf{U}} _{\mathbf{m}_{2}} \mathbf{X}_{2} \mathbf{X}^{2} \mathbf{m}_{2}$		
Clear Del Select All Ctrl+A Invert Selection Shift+Ctrl+I Repeat SMILES Ctrl+Y	⊐,[], ⊕, ^→^, ∭, ≛, □ ○ ○ ≈ ۞	CAS Draw -	C12=CC=CC=C1NC	=C2
	SMILES Alt+Ctrl+C SLN	Sea Click and drag to	select objects. Ctrl-dick to select or deselect ind SMLES string or InChi,	× C H
Get 3D Model Insert File Insert Object Object	InChI InChI Key CDXML Text CtrI+D MOL Text Alt+Shift+CtrI+O MOL V3000 Text Alt+CtrI+O HELM Alt+CtrI+E HELM (Natural Analog)	$ \begin{array}{c} & & & \\ & $	then press [Enter] or click on the Add to Editor Icon. Examples: 50-78-2 CC(=0)Oc1ccccc1C(=O)O InCh=15/C9H804/c1- 6(10)13-53-24- 7(8)9(11)12/h2-5H,1H3, (H,11,12)	O S N P Cl. Si N № V. ⊑ O O O O O O O O O O O O
		Recent Search His	Zoom: 100%	ACS International


(2)直接在ChemDraw中进入SciFinderⁿ联用检索

点击ChemDraw菜单Add-ins列表中Search SciFinderⁿ这项; 或点击CAS SciFinderⁿ的新Logo




American Chemica

(3) 通过MDL Molfile 文件导入

.

Structure Match	O Substances (28,125)	获取物质结果集的	的文献,反应和供应商信
As Drawn (617)	References 🗸 💾 Reaction	ons 🗸 📜 Suppliers 🗸	▲ Save
Substructure (28K)	同时获取三个精准	主度的物质检索结果	3
Similarity (73)			۲ 2477823-84-8 ۲ J
Analyze Structure Precision	\sim	$\gamma \gamma $	
Chemscape Analysis			~
Visually explore structure similarity with a powerful new cool. Learn more about Chemscape.	C ₁₃ H ₁₁ NO 3-(3-Furanyl)-5-methyl-1 <i>H</i> -indole	C ₁₄ H ₁₃ NO 1 <i>H</i> -Indole, 3-(2-furanyl)-2,6-dimethyl-	C ₁₆ H ₁₆ N ₂ O Furo[3,2-c]pyridine, 4,5,6,7-tetrahydro-4- (6-methyl-1 <i>H</i> -indol-3-yl)-
Create Chemscape Analysis	■ 1 Reference Reactions Supplier	s References Reactions Supplier	
Filter by Exclude	4	5	6
 Commercial Availability 	1443502-17-7	۲ 2535031-21-9	۲ 2110044-55-6 ۲ N
Available (14K)			

结构检索匹配维度

As Drawn:

绘制结构中可出现R基团、可变基团。绘制结构中价态未达饱和的原子只能接氢, 环系(如有)不能与其他的环稠合或成桥环

Substructure:

包括As Drawn的检索稠合或成桥环结果,另外价态未达饱和的原子可以连接氢以外的其他原子,环系(如有)可以与其他环

Similarity:

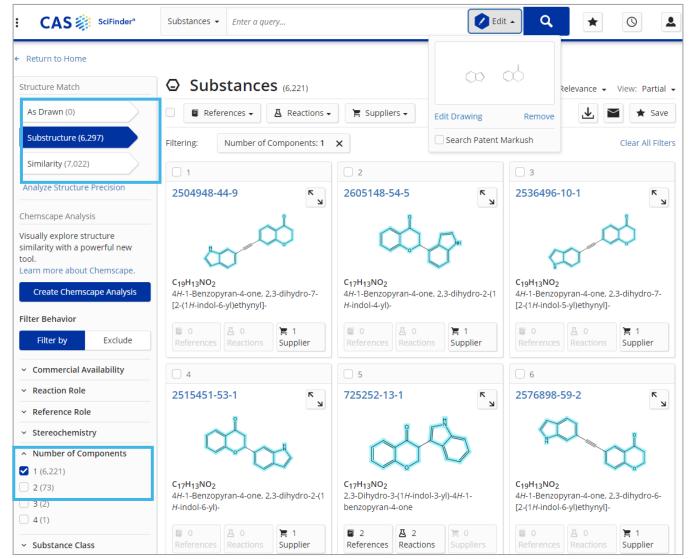
绘制结构中不能出现R基团、可变基团,绘制的结构必须是一个确定的结构。获得 片段或整体结构与被检索结构相似的物质,母体结构可以被取代,也可以被改变

Structure Match Introduction https://scifinder-n.cas.org/help/#t=Working_with_Search_Results%2FSubstances%2FStructure_Match.htm&rhsearch=as%20drawn

Filter by从物质角色、属性、活性、结构等 多方面对结果进行分析

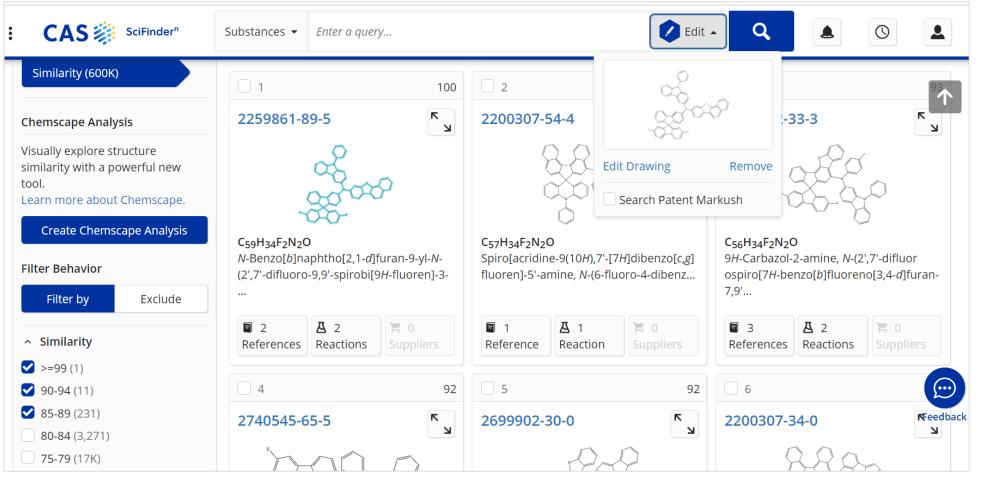
丰富直观的聚类分析, 高效直观地纵览结果, 便捷地选择或排除结果

Filter Behavior	Reference Reactions Suppliers	
Filter by Exclude	4	
 Commercial Availability 	1443502-17-7 الا	25
 Reaction Role 	1.	
 Reference Role 		
 Stereochemistry 		
 Number of Components 	C ₁₄ H ₁₃ NO	C ₁₄
 Substance Class 	7-Methyl-3-(3-methyl-2-furanyl)-1 <i>H-</i> indole	1 <i>H</i> -
 Isotopes 		
 Metals 	Image: 1Image: 2Image: 3Image: 3Image: 3ReferenceReactionsSuppliers	Re
 Molecular Weight 		
 Experimental Property 	7	
 Experimental Spectrum 	2534033-51-5 ۲	14
 Regulatory Data by Country 	p-~~	
 Regulatory Data by List 		
 Bioactivity Indicator 		
 Target Indicator 	C ₁₆ H ₁₆ N ₂ O Furo[2,3-c]pyridine, 4,5,6,7-tetrahydro-7-	C ₁₄ 5-M
 Search Within Results 	(6-methyl-1 <i>H</i> -indol-3-yl)-	ind



As Draw——检索盐或者同位素标记物

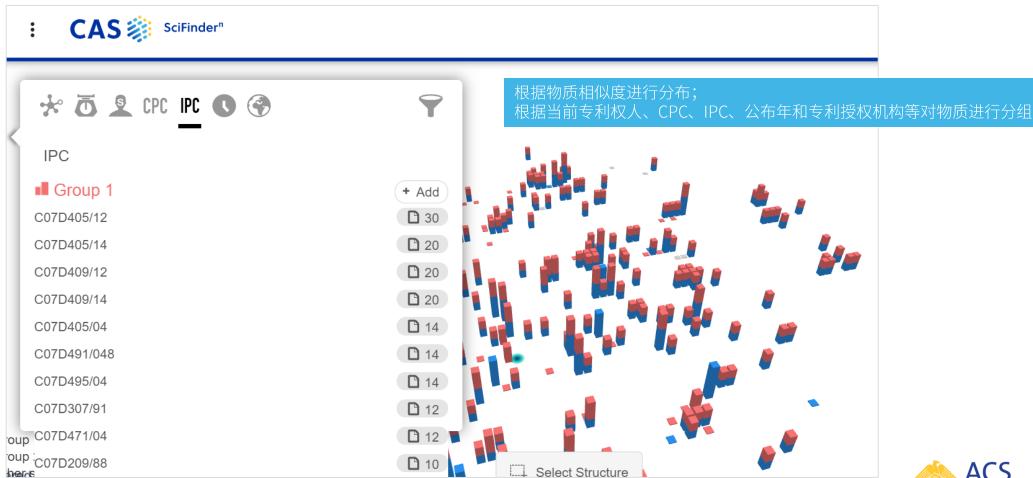
As Drawn (16)		
Substructure (24)		6
Similarity (24K)	610798-31-7 N 1567366-94-2 Edit Drawing	Remove
Analyze Structure Precision	Search Patent	
Chemscape Analysis		
Visually explore structure similarity with a powerful new tool. Learn more about Chemscape. Create Chemscape Analysis	C22H21N3O4 C22H16D5N3O4 Icotinib N-[3-(Ethynyl-2-d)phenyl]-7,8,10,11,13, 14-hexahydro-10,11-d2[1,4,7,10]tetrao xacy	C ₂₂ H ₈ D ₁₃ <i>N-</i> [3-(Ethy 14-hexahy 10]
Filter Behavior	Image: 564 Image: Amage:	2 Reference
Filter by Exclude		
 Commercial Availability 	□ 4 □ 5	6
 Reaction Role 	1567366-92-0 × 1567366-91-9 ×	156736
 Reference Role 	Kin Caa	
 Stereochemistry 	ਮੁੱਠੇ, ਨੂੰ	
 Number of Components 	1	
 Substance Class Salt and Compound With (8) Organic/Inorganic Small Molecule (8) 	C22H12D9N3O4 C22H20DN3O4 N-[3-(Ethynyl-2-d)phenyl]-7,8,10,11,13, N-[3-(Ethynyl-2-d)phenyl]-7,8,10,11,13, 14-hexahydro-7,8,13,14-d4[1,4,7,10] 14-hexahydro[1,4,7,10]tetraoxacy tetrao clododeci	C ₂₂ H ₁₃ D ₈ N-(3-Ethyr hexahydr acycl
Isotopes	2 A 19 F 0 0 C A 2 C </td <td>2 Reference</td>	2 Reference
 Containing Isotopes (7) Not Containing Isotopes (9) 		9


片段结构的物质检索——亚结构

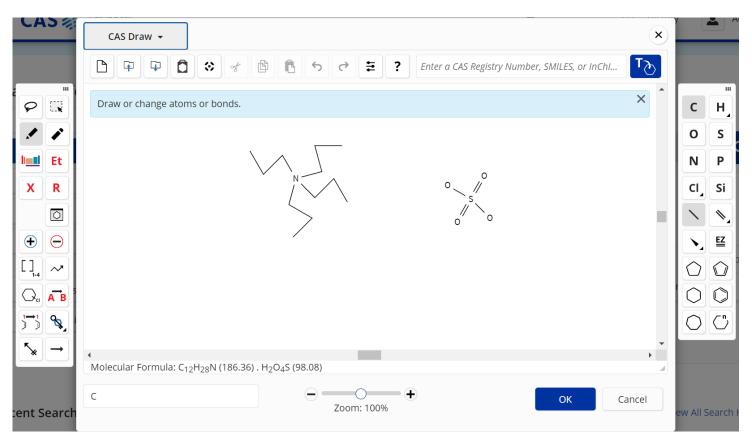
ACS International

© 2022 American Chemical Society. All rights reserved.

相似结构检索 推荐使用确定的结构进行Similarity检索



对结构检索结果集进行可视化分析:发现物 质研究空白及专利布局


对结构检索结果集进行可视化分析:发现物 质研究空白及专利布局

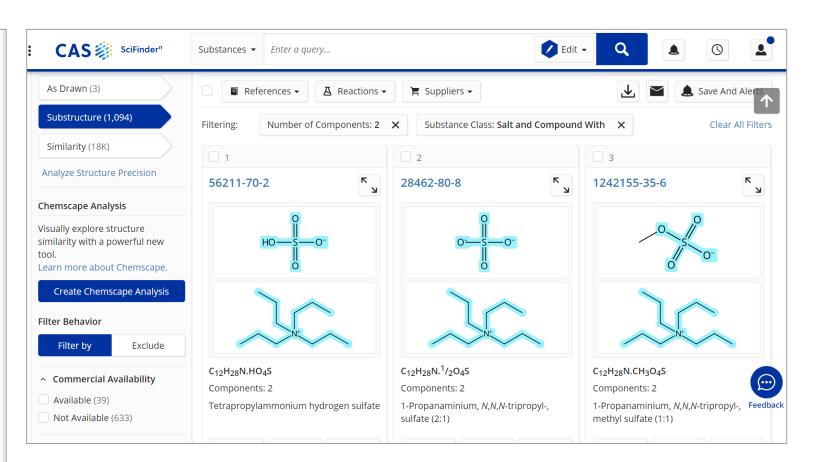
方法一: 绘制不同组分, 忽略化合价

© 2022 American Chemical Society. All rights reserved.

获得所需结果

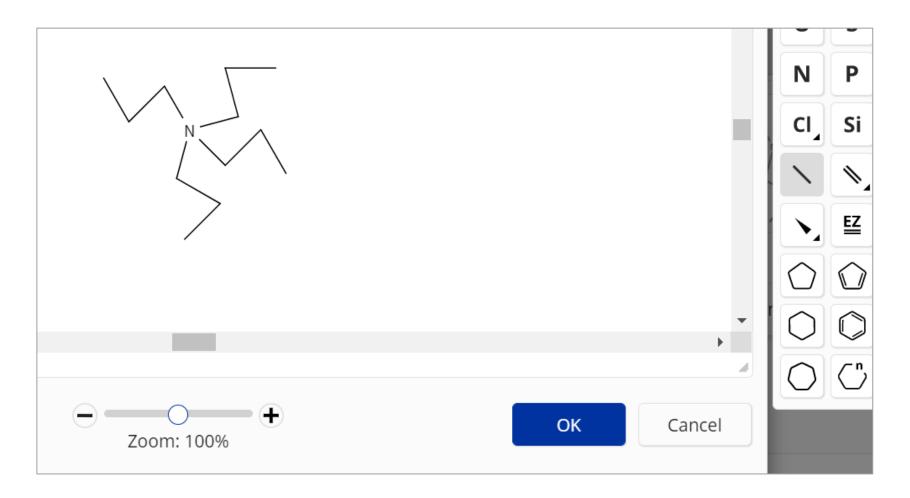
Number of Components

2 (672)

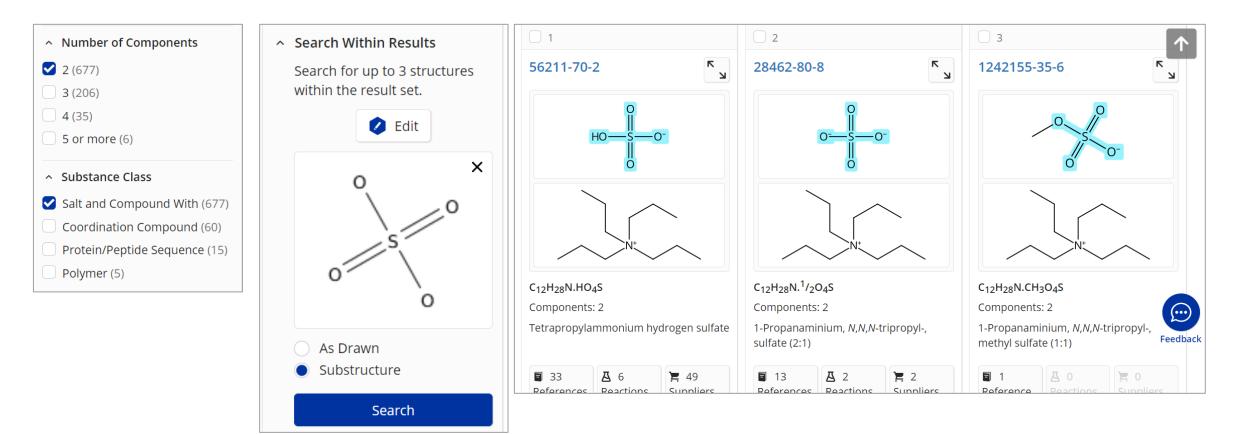

3 (206)

4 (35)

5 or more (6)

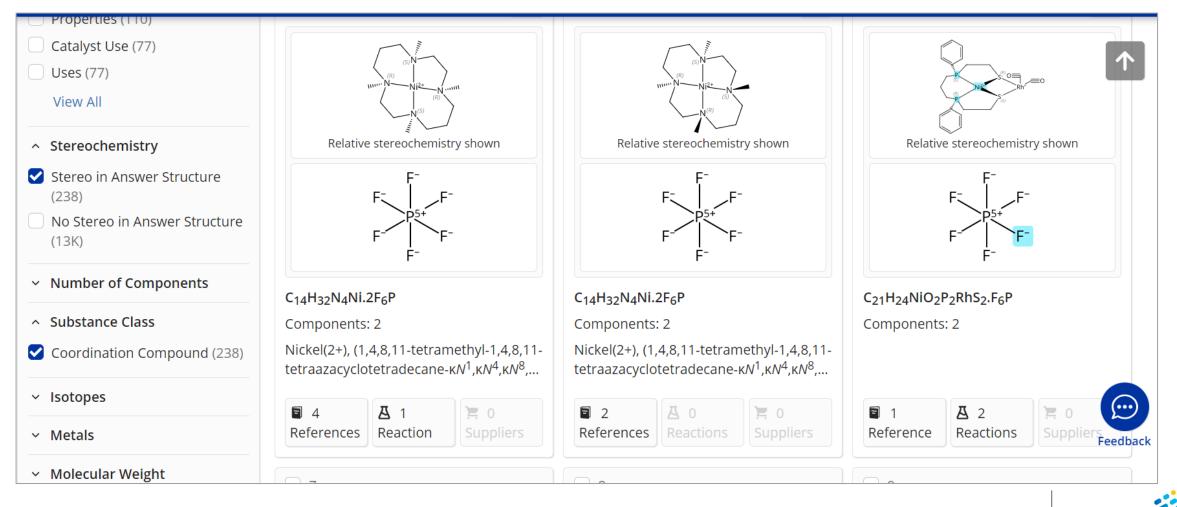

Substance Class

Salt and Compound With (672)
 Coordination Compound (60)
 Protein/Peptide Sequence (15)
 Polymer (5)



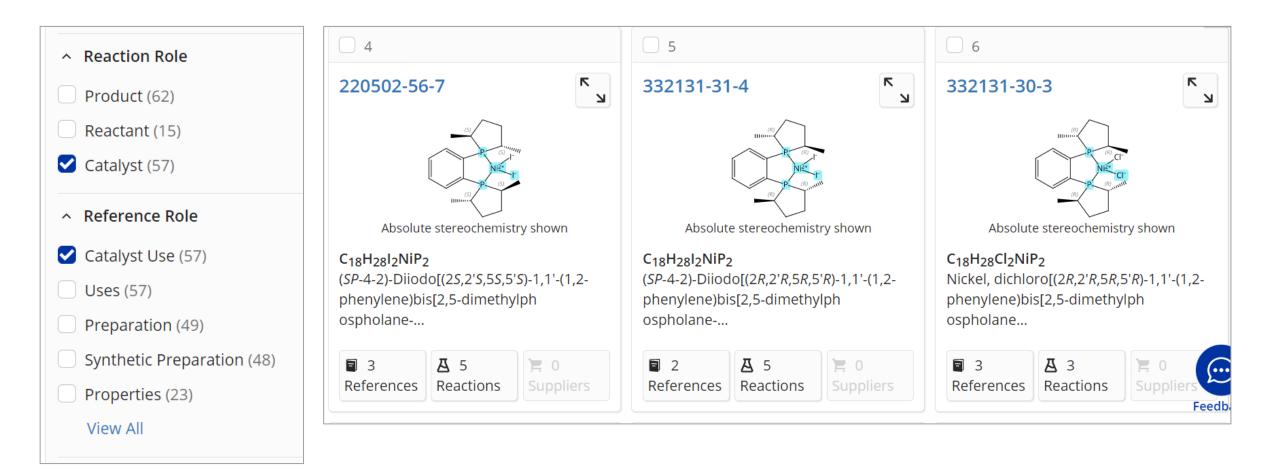
方法二: 绘制其中一部分结构

在结果集中通过另外组分结构筛选

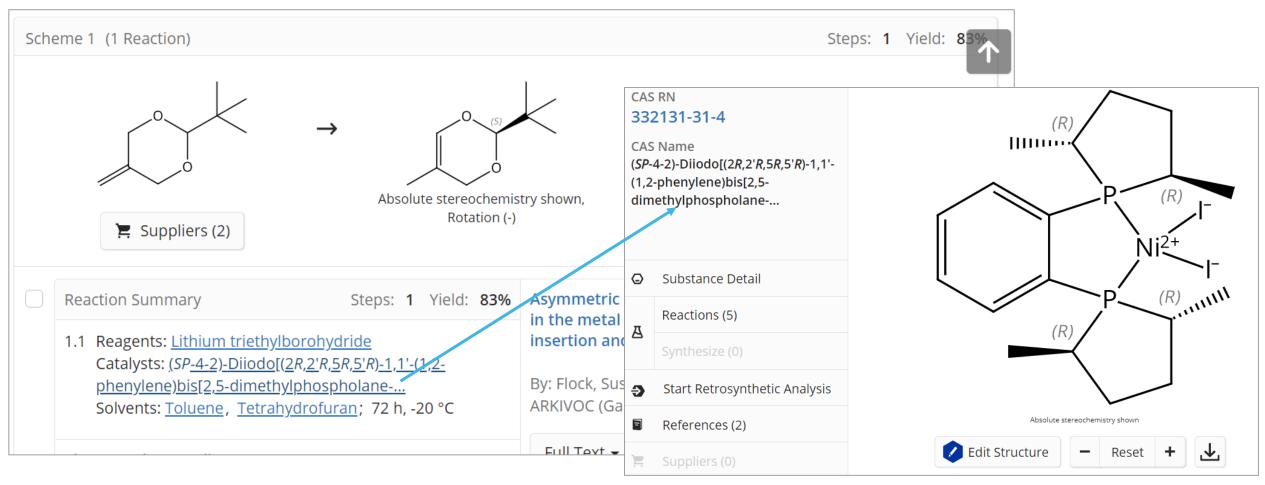


案例2: 双膦配体-镍基手性催化剂检索

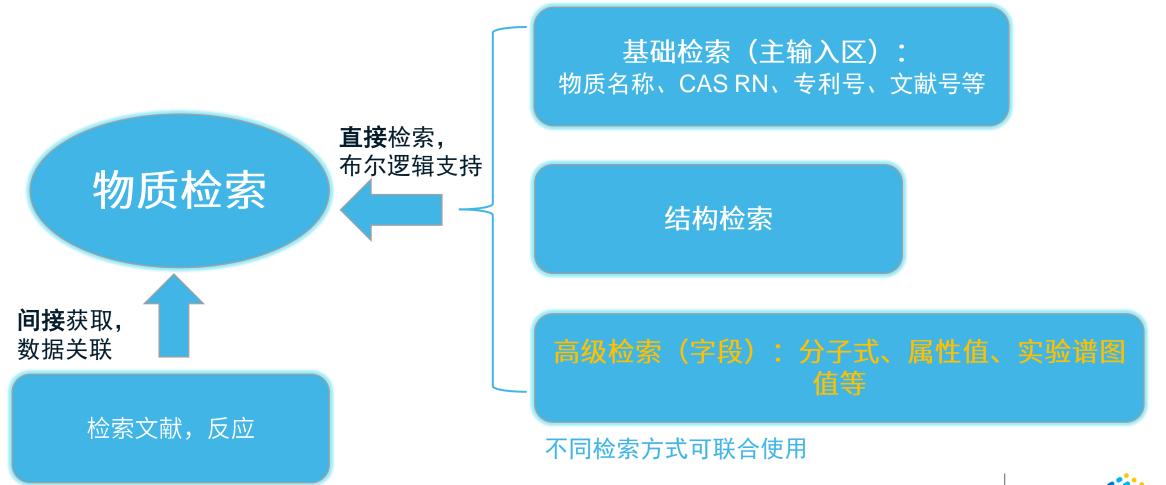
Searching for	\uparrow	
& All	Search by Substance Name, CAS RN, Patent Number, PubMed ID, AN, CAN, and/or DOI. Learn More	
⊖ Substances	Enter a query	Edit 🔺 🔍
A Reactions	AND - Molecular Formula -	P
References	Examples: C6H6 (C8H8)x C2	Ni_p
📜 Suppliers	Add Advanced Search Field Learn more about Scif Edit [x f Drawing Remove
♦ Biosequences		earch Patent Markush

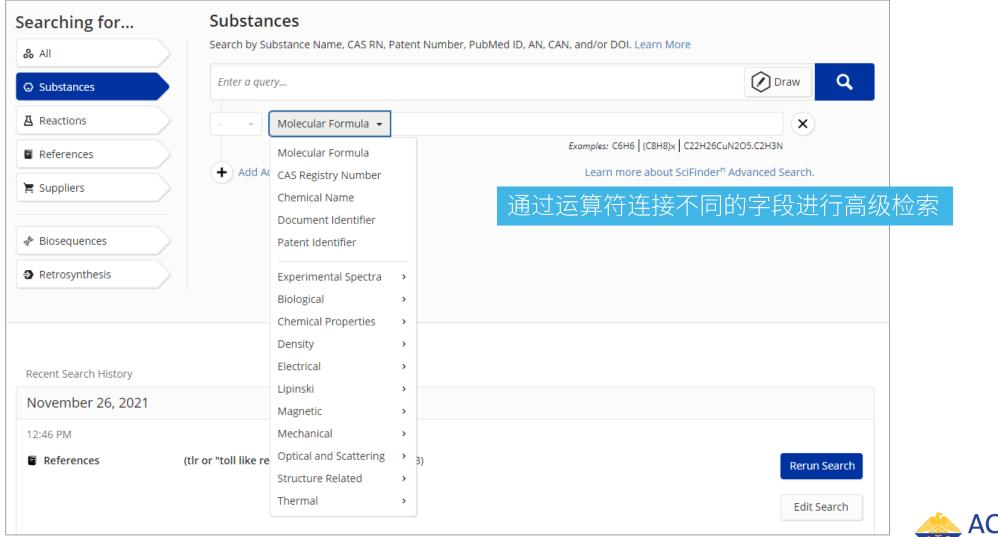


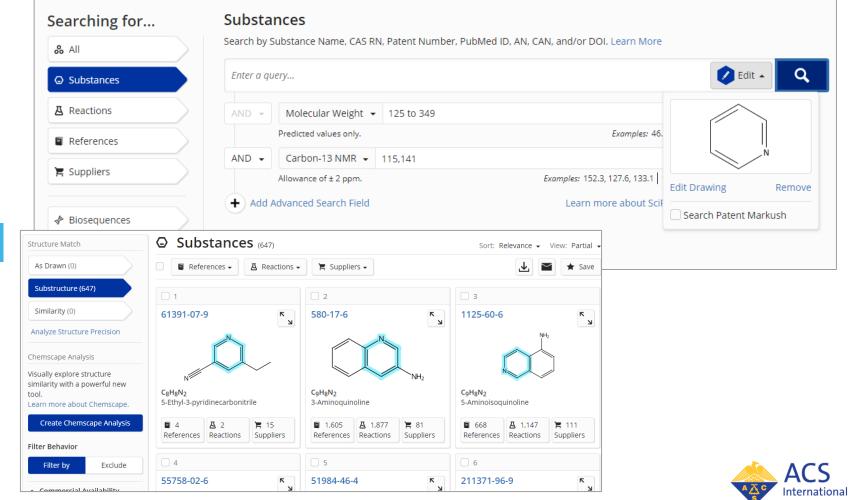
选择物质结果集中带有立体键的结果



可通过物质的Reaction role或者Reference role筛选物质







案例1: 查找符合分子量在125-350之间; 核磁碳 谱峰值包括115, 141; 包含吡啶结构的物质

American Chemical Society

案例2: 获取玻璃体转化温度在50-100摄氏 度之间; 密度小于1.5g/cm3的聚合物

& All	Search by Substance Name, CAS RN, Patent Nur	nber, PubMed ID, AN, CAN, and/or DOI. Learn More
⊋ Substances	poly*	× Draw
C Reactions	AND 👻 Glass Transition Temperature (°C)	- 50 to 100
References	Experimental values only.	Examples: 1.15 <7.53 >150 9.3 to 15 8.9e-2
📕 Suppliers	AND - Density (g/cm3) - <1.5	×
	Include predicted values.	Examples: 1.15 <7.53 >150 9.3 to 15 8.9e-2
Biosequences	+ Add Advanced Search Field	Learn more about SciFinder ⁿ Advanced Search.
Retrosynthesis		

获得的结果均满足检索需求

Filter Behavior				□ S	Substance Detail (1 of 107)						← Prev Next →	
)8)	Ref	erences (37K)	A Reactions (3,067)	📜 Suppliers (8)				⊥	★ Save
Filter by Exclude	Filter by Exclude											
 Commercial Availability Available (98) Not Available (10) 	□ 1 25248-42-4		ĸ	90(*			0	.o_*]_n		
 Reaction Role Product (105) Reactant (100) 				(C ₆ H ₁₀ O ₂) _n Poly[oxy(1-oxo-1,6-hexanediyl)] (9CI, ACI) Polymer Class Terms Polyester								
Reagent (80)			-n		Key Physical Properties Melting Point (Experimental)			Value 65.1 °C			Condition - -	
Catalyst (66)	(C ₆ H ₁₀ O ₂) _n Polycaprolactone				Density (Experimental)				1.2 g/cm ³			
Solvent (32)	Polycapiolactone	 Experiment 										
 Reference Role 	■ 38K	F	Biological	Chemical	Density	Electrical	Flow and Diffusion	Interface	Mechanical	Optical and Scattering	Structure Related	Thermal
Preparation (108)	References Reactions	Su	Property	Property			V	/alue		Condition	Source	
G				Glass Transition Temperature			6	3.6 °C		-	(1) CAS	
			Glass Transitio	n Temperature			6	2.8 °C		-	(1) CAS	
			Glass Transitio	n Temperature			6	52.0 °C		-	(1) CAS	
			Glass Transitio	n Temperature			6	51.8 °C		-	(1) CAS	
© 2022 American Chemical Society. All rig	ghts reserved.		Glass Transitio	n Temperature			6	0.4 °C		-	(1) CAS	

Searching for... Substances Search by Substance Name, CAS RN, Patent Number, PubMed ID, AN, CAN, and/or DOI. Learn More 🗞 All Draw Q Enter a query... ☑ Substances **A** Reactions Molecular Formula -Х $\overline{}$ Examples: C6H6 (C8H8)x C22H26CuN2O5.C2H3N References + Add Advanced Search Field Learn more about SciFinderⁿ Advanced Search. **E** Suppliers

适用于分子式检索的物质类型包括: 1. 无机化合物:合金,无机表格化合物,多氧簇金属化合物等 2. 聚合物

分子式检索化合物检索规则

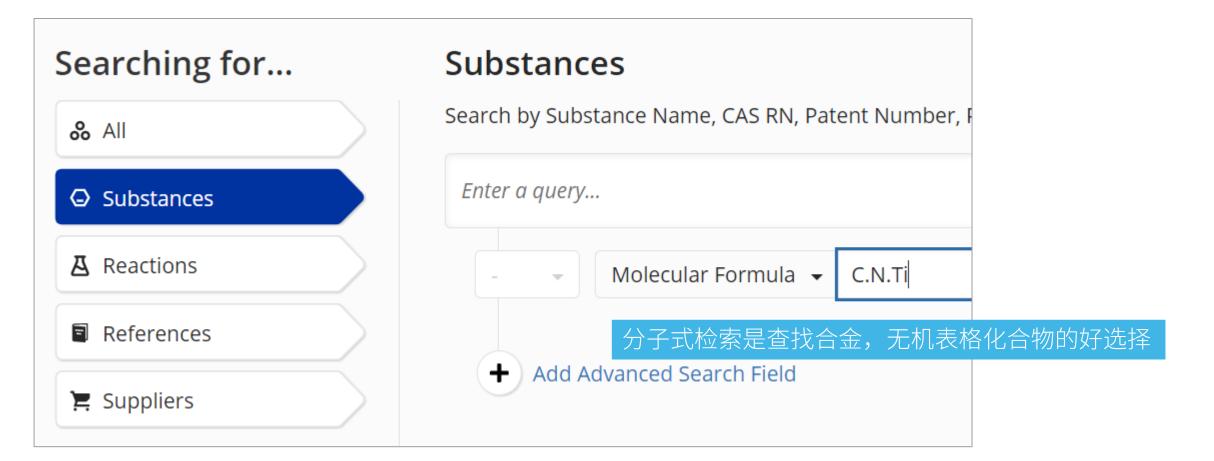
- 不含碳化合物,按照元素符号的首字母顺序进行排列,如:氯化钠NaCl

	Searching for	Substances	
	& All	Search by Substance Name, CAS RN, Patent Numb	
	⊖ Substances	Enter a query	
	A Reactions	Molecular Formula CINa	
C排第一位,	H排第二位,	其他元素符号按照首字母顺序进行排列,如:碳酸H ₂ CO ₃	5

- 不同组分之间用"."隔开,如:铁钴镍合金

Searching for	Substances
& All	Search by Substance Name, CAS RN, Patent Number
☑ Substances	Enter a query
A Reactions	Molecular Formula - Co.Fe.Ni
References	

- 含碳化合物,


分子式检索化合物检索规则

 无机含氧酸盐,标引规则为金属离子和相应的含氧酸的混合物,即:在分子式中,需要 补充和阳离子等同个数的氢原子,如:磷酸钠Na₃PO4

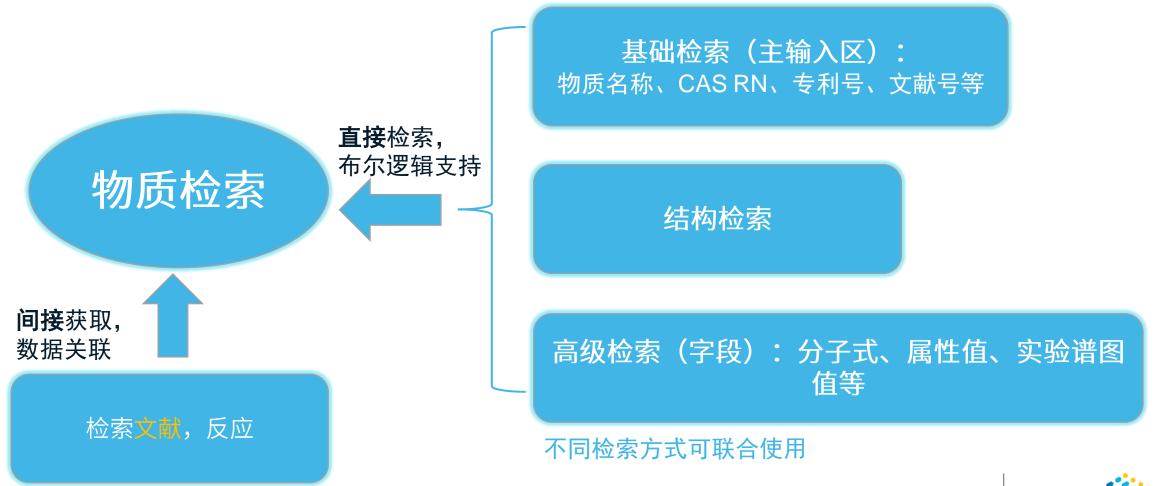
Searching for	Substances
& All	Search by Substance Name, CAS RN, Patent Number, Pu
	Enter a query
A Reactions	Molecular Formula - 3Na.H3O4P
References	

可通过物质的文献角色或者物质类别筛选结果

CAS 🗱 SciFinder ⁿ	Substances - Edit Search Enter a que	ry X Dr	aw 🔍 🔺 🔇 ≰	
Filter by Exclude	□ 🛛 References 🕶 🗳 Reactions 🕶	📜 Suppliers 🗕	Save And Alerts	
Commercial Availability	□ 1	2	Substance Detail (2 of 559)	♦ Prev Next →
	12627-33-7 د ي	12347-09 <u>-0</u>	References (3,627)	🛓 📓 💄 Save
Uses (442)	Image Not Available Unspecified	Component Ratio	CAS Registry Number 12347-09-0	
 Technical or Engineered Material Use (405) 	Titanium carbide nitride	Ti 1 N 0-1	Component Ratio CAS RN Ti 1 7440-32-6	
Preparation (293)Properties (240)		C 0-1	N 0-1 17778-88-0 C 0-1 7440-44-0	
 Process (174) View All 		C.N.Ti Components: 3 Titanium carbide nitride (Ti(C,N))	C.N.Ti Components: 3 C ₀₋₁ N ₀₋₁ Ti	
 Number of Components Substance Class 	5,90954ReferencesReactionsSuppliers	3,627A 0ReferencesReactionsSuppliers	Titanium carbide nitride (Ti(C,N)) (9Cl, ACl) Other Names and Identifiers	Expand All Collapse All
Tabular Inorganic (544)Alloy (13)	4	5	A Experimental Properties Mechanical Structure Related Thermal	
Manual Registration (2)	106698-99-1 د	110686-85-6 ۲ ۷		Source
			Tensile Strength 1251.9 MPa (None) Tensile Strength 1230.0 MPa (None)	(1) CAS
			Tensile Strength 1221.3 MPa (Yield)	(1) CAS
			Tensile Strength 1207.8 MPa (Yield) -	(<u>1)</u> CAS

Tensile Strength

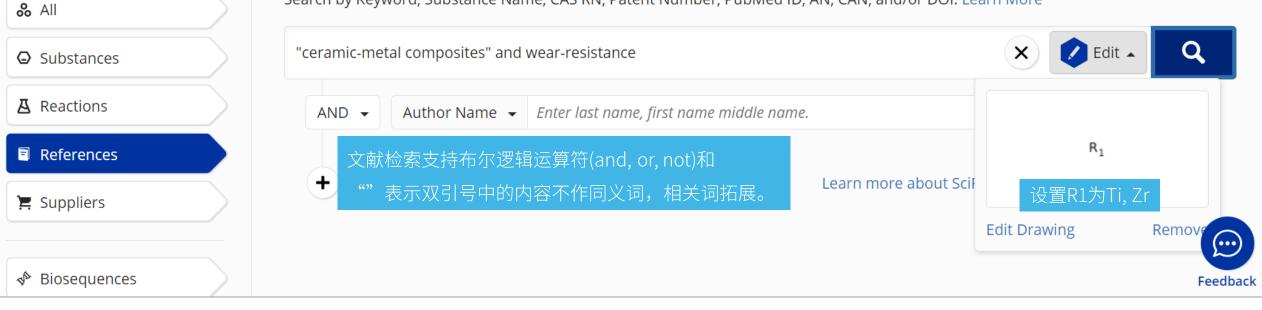
Tensile Strength


(1) CAS

(1) CAS

1207.4 MPa (None)

1207 1 MPa (Vield)



案例: 含Ti或者Zr的耐磨陶瓷复合材料

Searching for...

References

Search by Keyword, Substance Name, CAS RN, Patent Number, PubMed ID, AN, CAN, and/or DOI. Learn More

可通过物质角色筛选选项快速筛选文献

Structure Match	References (118)	Sort: Relevance 👻 View: Full Abstract 👻
As Drawn (118)	□ Substances - 由文献获得物质 ng -	Save And Alerts
Substructure (168)	Get Substances from References	
Filter Behavior	All Results Selected Results ogical properties of plasma spraye	d TiCN-Mo based composite
Filter by Exclude	By: Zhang, Fanyong; Li, Chao; Yan, Shu; He, Jining; Liu, Baoxi; Yin, Fuxing Applied Surface Science (2019), 464, 88-98 Language: English, Database: CAplu	IS
 Document Type 	In the present work, TiCN-Mo composite coatings were fabricated by using react aggregates and metal Mo powders under N ₂ condition. Results showed that me	
 Substance Role 	TiCN matrix to generate nearly alternate ceramic - metal composite coatings. G	bood interface bond were achieved between metal
Uses (92)	Mo strips and ceramic matrix due to the formation of rim structure. The Mo add coatings. The hardness distribution uniformity of composite coatings also decre	
Process (56)	composite coatings showed higher friction coefficient than coatings without Mo	. TiCN-Mo composite coatings showed improved
Properties (37)	wear resistance with lower wear rate. Under present sliding wear condition, by thick iron and titanium oxide layer and wear debris contained large amount	_
Preparation (14)	accompanied with oxidative wear.	
Formation, Non-preparative		Feedback
(4) View All	Full Text -	actions (0) 66 Citing (23) O Citation Map

Substance role为物质在文献中的研究角色, 如uses表明物质在文献中作应用研究; process作工艺研究等

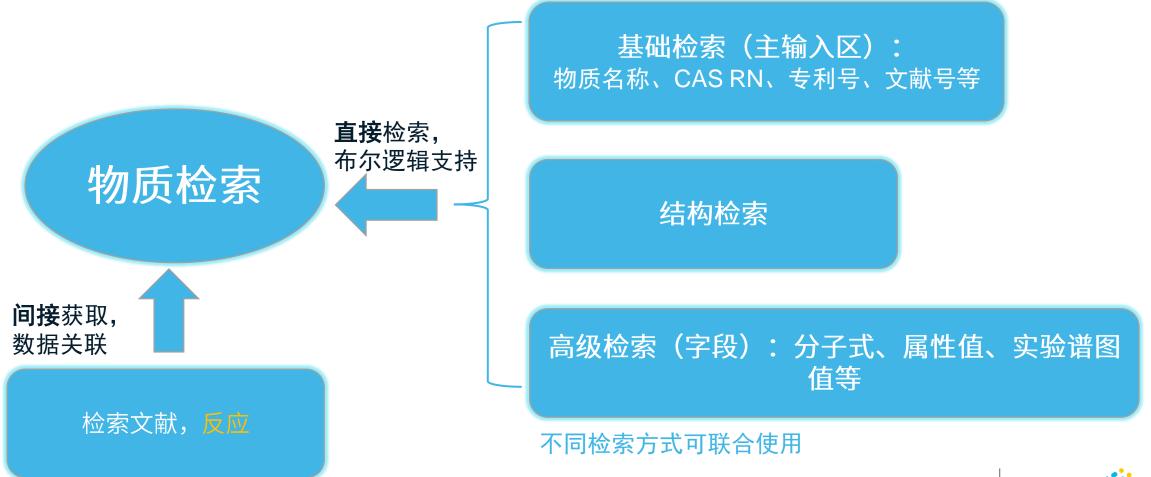
物质结果集中,用结构筛选出包含Ti或者Zr的结果

							Definitions	R-Group De	Frates a CAC Desister M		-	4	6	~
ave And Alerts		⊥		📜 Suppliers 🗸	nces • 🛛 🗛 Reactions •	🗌 🗐 Refe			Enter a CAS Registry Num	?	E	~	2	5
Clear All Filte				Structure - X	earch Within Results: Drawr	Filtering:	2 R3 R4 F	R1 R2						
		3		2		□ 1		R1: Ti, Zr						
к И	7	7440-67-7	к И	12347-09-0	к И	7440-32-6		✓ Atoms						
	_		Ratio	Component	_			Н						
	Zr		1	Ti	Ti			Li Be			R1			
			0-1	Ν				Na Mg						
		Zr	0-1	С		Ті	Sc Ti V							
		Zirconium		C.N.Ti		Titanium	Y Zr Nb I							
				Components: 3			* Hf Ta	C3 Da						
			le (Ti(C,N))	Titanium carbide nitride			**	Fr Ra **						
¥ 442 Suppliers	A 1,412 Reactions	157K References	hs Suppliers	■ 3,627 References Reactions	A 3,283 F 890 Reactions Suppliers	455K References	s La Ce Ac Th	*Lanthanides **Actinides						
		6		5		4	DT	Isotopes			O n: 100%			
N N	3-2	14940-68-	۲ ۲	12045-63-5	-9 K	1374584-7								
	он				Percent	Component								

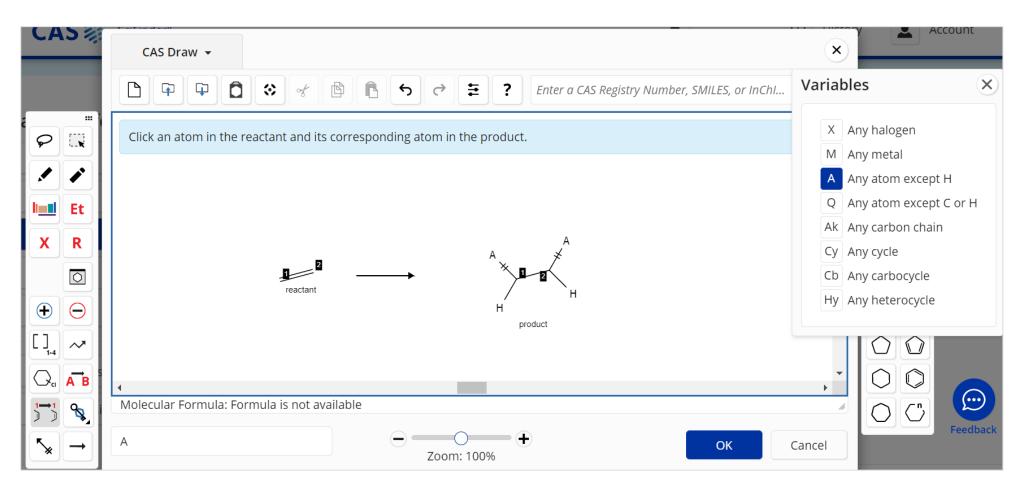
20-70

5-20

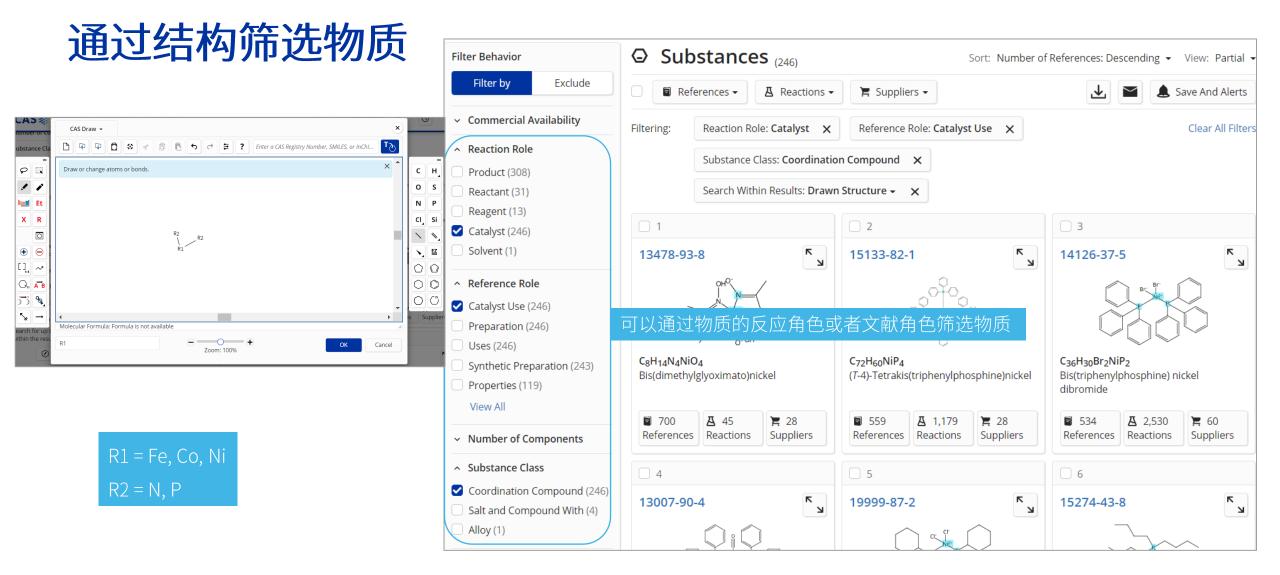
AI


Ti

Zr(IV)

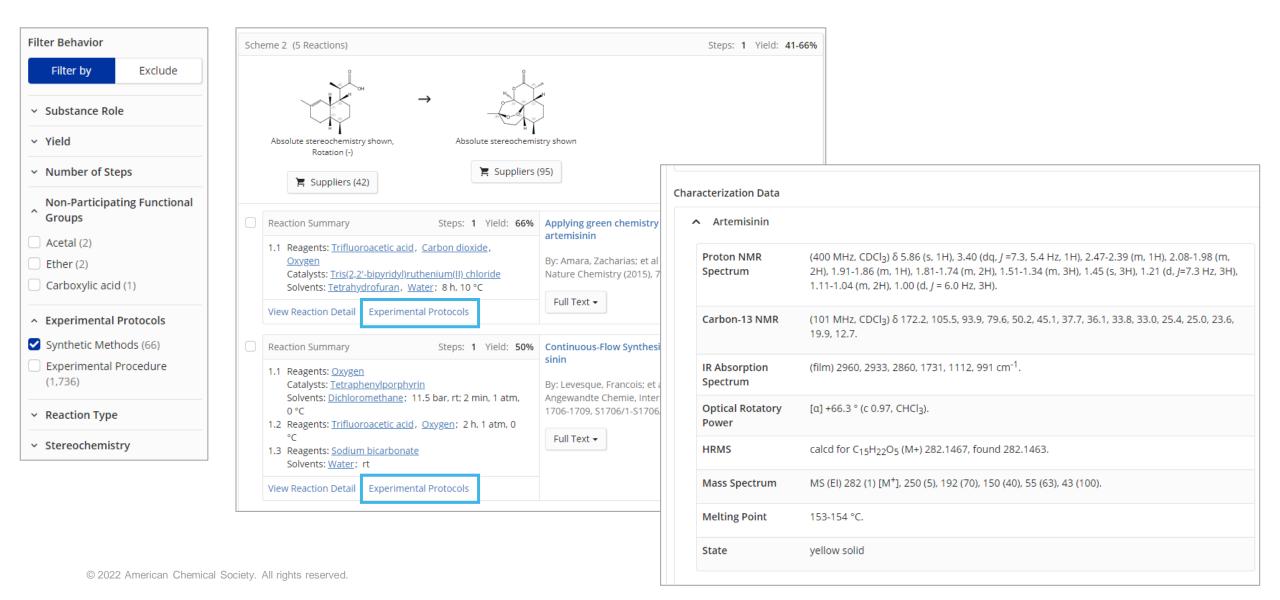


案例:乙烯加成反应中,铁/钴/镍基催化剂检索



获得文献后,经过筛选再获取物质

Filter Behavior	References (512)	Sort: Relevance 👻 View: Ful	ll Abstract 👻								
Filter by Exclude	□ 💿 Substances - 🗛 Reactions - ፋ Citing -	上 📔 🌲 Save	And Alerts								
 Document Type 	Get Substances from References										
✓ Language	All Results Selected Results kettle with metering tank and method for l	atch-series industrial									
 Publication Year 	bethane										
 Available at My Institution 	By: Luo, Zhifeng; Zhong, Kai; Zhu, Qijun China, CN113087594 A 2021-07-09 Language: Chinese, Database: CAplus	CAS SciFinder	Substances 👻	Enter a que	ry			🖉 Dra	w Q		
~ Author	The present invention relates to a 1,2-dibromoethane production device comprising an ac metering tank, an exhaust gas absorption device, a water washing kettle, and an alk. wash	 Commercial Availability 			_						
 Organization 	to the water washing kettle and the alk. washing kettle in sequence, wherein the addition	 Reaction Role 			۲	2 7440-50-8		۲	3 7440-44-0		r
 Publication Name 	and the absorption kettle on the same layer; and the absorption kettle is connected with a added in the middle for control. The addition kettle comprises a first addition kettle, a sec	✓ Reference Role	7631-86-9	,	R	7440-50-8	i	Ц	7440-44-0		К
 Concept 	kettle connected in sequence with a submerged vent pipe resp. The device mainly solves t 1,2-dibromoethane, the device utilization rate is low, the device occupancy rate is large, ar	 Stereochemistry 	$\circ =$	—si-	=0		Cu			$\boldsymbol{\mathcal{C}}$	
 CA Section 	investigation is focused on the main difficulty lies in the selection of batch-type parallel ma capacity is increased after using this device. The yield of the obtained product is 99%, which	 Number of Components 	0-	-10-	_0		Cu			C	
		 Substance Class 	O ₂ Si Silica			Cu Copper			C Carbon		
 CAS Solutions 	PatentPak ▼ Full Text ▼ Q Substances (3) A Reaction (*	 Isotopes 									
 Formulation Purpose 	_ 2	∽ Metals	1.2M References	A 96K Reactions	₩ 659 Suppliers	1.2M References	A 79K Reactions	📜 2,658 Suppliers	1.1M References	▲ 26K Reactions	📜 622 Suppliers
 Database 		 Molecular Weight 				0 5			6		
 Search Within Results 	 Synthesis and characterization of iron, cobalt, and nickel complexes ligands and their setal, the properties in athylene alignmarization 	 Experimental Property 	4		-			-			-
· Search Within Results	ligands and their catalytic properties in ethylene oligomerization By: Wang, Li; Zhang, Cheng; Wang, Zhong-Xia	 Experimental Spectrum 	7782-44-7		х И	7732-18-5	i	Я	7440-21-3	5	К
	European Journal of Inorganic Chemistry (2007) (17) 2777-2787 Language: English Data	Regulatory Data by Country/Region		0=0			H_2O			Si	
		 Regulatory Data by List 								0.	
		 Bioactivity Indicator 	O ₂ Oxygen			H ₂ O Water			<mark>Si</mark> Silicon		
		 Target Indicator 	🗐 1.1M	A 441K	¥ 9	🗐 1M	囚 9.8M	1 219	■ 1M	Ⅰ 1,637	1 79
		✓ Search Within Results	References	_	Suppliers	References	_	Suppliers	References		Suppliers
© 2022 American Cher	nical Society. All rights reserved.	Filter Content Report	7			8			9		



物质属性或者谱图查看

Substance Deta	(,								
References (7,843)	tions (2,965)	📜 Suppliers (95)							
CAS Registry Number 63968-64-9									
			H _M	reochemistry shown					
,12-Epoxy-12 <i>H-</i> pyrano[4,3- <i>j</i>]-1,2-benz	odioxepin-10(3H)-one, octahydro-3,6	-	yl-, (3R,5aS,6R,8aS,9R,1 Value	25,12aR)- (9Cl, ACl)	Condition		~	Experimental Spectr
,12-Epoxy-12 <i>H</i> -pyrano[4,3-j]-1,2-benz Key Physical Properties	odioxepin-10(3 <i>H</i>)-one, octahydro-3,6	,	-	2 <i>5</i> ,12a <i>R</i>)- (9Cl, ACl)	Condition		~	Experimental Spectr
3,12-Epoxy-12 <i>H</i> -pyrano[4,3- <i>j</i>]-1,2-benz	odioxepin-10(3 <i>H</i>	')-one, octahydro-3,6		Value	25,12aR)- (9Cl, ACl)	Condition -		~	
Melting Point (Experimental) Boiling Point (Predicted)				Value 282.33	25,12aR)- (9CI, ACI)	Condition -			Experimental Spectr Predicted Properties
,12-Epoxy-12 <i>H</i> -pyrano[4,3- <i>j</i>]-1,2-benz Key Physical Properties Molecular Weight Melting Point (Experimental) Boiling Point (Predicted)		n)-one, octahydro-3,6		Value 282.33	25,12aR)- (9CI, ACI)	Condition - -			Predicted Properties
12-Epoxy-12 <i>H</i> -pyrano[4,3-j]-1,2-benz Key Physical Properties Molecular Weight Melting Point (Experimental) Boiling Point (Predicted)		nental Properti	ies	Value 282.33	25,12aR)- (9Cl, ACl)	Condition Lipinski	Optical and Scattering	`	Predicted Properties Predicted Spectra
,12-Epoxy-12 <i>H</i> -pyrano[4,3-j]-1,2-benz Key Physical Properties Molecular Weight Melting Point (Experimental) Boiling Point (Predicted)	Experim Biologica	nental Properti	ies	Value 282.33 156-157 °C		- Lipinski		~	Predicted Properties Predicted Spectra
,12-Epoxy-12 <i>H</i> -pyrano[4,3- <i>j</i>]-1,2-benz Key Physical Properties Molecular Weight Melting Point (Experimental) Boiling Point (Predicted)	 Experim Biologica Property 	nental Properti	ies	Value 282.33 156-157 °C		- Lipinski Value	Condition	> > >	Predicted Properties Predicted Spectra Bioactivity Indicator
,12-Epoxy-12 <i>H</i> -pyrano[4,3- <i>j</i>]-1,2-benz Key Physical Properties Molecular Weight Melting Point (Experimental) Boiling Point (Predicted)	 Experim Biologica Property Median Let 	nental Properti	ies	Value 282.33 156-157 °C		- Lipinski Value 5576 mg/kg	Condition Organism: rat; Route: oral	> > > >	Predicted Properties Predicted Spectra
,12-Epoxy-12 <i>H</i> -pyrano[4,3- <i>j</i>]-1,2-benz Key Physical Properties Molecular Weight Melting Point (Experimental) Boiling Point (Predicted)	 Experim Biologica Property 	thental Properti Chem thal Dose	ies	Value 282.33 156-157 °C			Condition Organism: rat; Route: oral Organism: mouse; Route: o	> > > >	Predicted Properties Predicted Spectra Bioactivity Indicator Target Indicators
8,12-Epoxy-12 <i>H</i> -pyrano[4,3-j]-1,2-benz Key Physical Properties Molecular Weight Melting Point (Experimental) Boiling Point (Predicted)	 Experim Biologica Property Median Let Median Let 	hental Properti I Chem thal Dose thal Dose thal Dose	ies	Value 282.33 156-157 °C		- Lipinski Value 5576 mg/kg	Condition Organism: rat; Route: oral	* * * * *	Predicted Properties Predicted Spectra Bioactivity Indicator

在反应方法中查看

总结: CAS SciFinderⁿ支持多途径物质检索

- 基础检索: 物质标识符; 文献号
- 结构式检索:
 - 与Chemdraw联用
 - 有机化合物、盐类、金属有机化合物均支持结构式检索
- 高级检索:
 - 属性值检索: 助力结构解析、快速检索功能材料
 - 分子式检索:无机盐、合金等
- 通过文献或者反应获取物质
- 点击物质CAS号,或者在反应方法中查看物质属性、谱图信息

1. 关注"ACS美国化学会"微信公众号, 搜索SciFinder-n, 查看检索技巧、检索视频, 以及论坛回放视频

2. CAS SciFinderⁿ网络在线演示培训资料 <u>https://www.cas.org/about/events/scifinder-webinars</u>

3.CAS官网上的培训资料 https://www.cas.org/support/training/scifinder-n

4.CAS SciFinderⁿ Help使用指南 https://scifinder-n.cas.org/help/#t=Searching_in_SciFinder-n%2FIntroduction_to_searching.htm

